New Review : Measuring, controlling and exploiting heterogeneity in optoelectronic nanowires

Interwire and intrawire inhomogeneity

Group PhD students Ruqaiya Al-Abri and Hoyeon Choi have written an invited review article for JPhys Photonics, published today.

Lead author Ruqaiya Al-Abri describes this work:

Among the one-dimensional structures, semiconductor nanowires have attracted great attention; from the growth process to the production of functional devices they have been widely studied. The growth condition of the nanowires can lead to non-uniformity (disorder) in the crystal structure, morphology, and geometry of the nanowire. Consequently, this affects the functionality of individual and/or ensembles of nanowires. However, researchers have benefited from disorder; it has been shown that disorder can enhance the performance of ensemble of nanowires such as in photovoltaic devices. This review article attempts to understand the disorder in these structures, investigates the origin of the inhomogeneity within “interwire” and between “intrawire” nanowires, and outlines different approaches to correlate disorder to functional parameters and hence optimize the performance of the nanowires.

Reference: Measuring, controlling and exploiting heterogeneity in optoelectronic nanowires, Ruqaiya Al-Abri, Hoyeon Choi and Patrick Parkinson, JPhys Photonics, (2021) DOI:10.1088/2515-7647/abe282

Welcome to Ruqaiya and Nawal!

The group welcomes Ruqaiya and Nawal as two new PhD students working in the group.

Ruqaiya will be working on nanolasers for on-chip photonics using both nanowires and nanoshapes developed by collaborators in UCL, ANU and China.

Nawal will be working on ultrafast photodetectors based on 2D materials with collaborators in Manchester and China.